狠狠操av,国产色诱视频在线观看,窝窝人体色www,丝袜老师办公室里做好紧好爽

撥號(hào)18861759551

你的位置:首頁 > 技術(shù)文章 > 如何測量您的成像系統(tǒng)中的景深

技術(shù)文章

如何測量您的成像系統(tǒng)中的景深

技術(shù)文章

Gauging Depth of Field in Your Imaging System

Over the years, we have answered countless questions regarding lens performance. Of those questions, none have been more difficult to define than requests for depth of field. The reason for this difficulty has more to do with the vagueness of the question than with the inability to provide a measured or calculated value. Consider for a moment what depth of field ls us. It is the distance by which an object may be shifted before an unacceptable blur is produced. For depth of field to be properly stated, it should contain not only the displacement of an image, but also a specific resolution. The depth of field specification is further complicated by a type of keystoning aberration that often occurs. This result can dramatically affect linear measurements and therefore render depth of field unusable. In this article we will take a closer look at depth of field calculations and compare them to physical measurements using the DOF 1-40 depth of field gauge. The gauge, as we will see later, offers a unique look at what depth of field really means and how we as system designers may wish to quantify this parameter. A simple geometric approximation for depth of field is shown in Figure 1.0. The linear blur (required resolution) Bp, Bm and Bf can be expressed in terms of angular blur by the following equation.

Figure 1

 

Using similar triangles, a relationship can now be made between angular blur and the focus point,

where λ is the aperture of the lens. Solving for δplus and δmin,

The derivation above is very specific to the intended resolution. However, many theoretical derivations of depth of field often assume the lens resolution to be nearly diffraction limited. The most popular of these derivations are based on microscope applications. A typical example for the total depth of field (dplus + dmin) is shown below.

Where λ is the wavelength and NA equals the numerical aperture of the lens.

In order to study depth of field we have put together a simple macro system consisting of a 25mm fixed focal length lens, 8mm spacer and Sony XC-75 monochrome CCD video camera. The system was chosen not for its performance but rather for its common real world implementation. Measurements were performed using the DOF 1-40 target. The target allows us to measure depth of field at either 1, 10, 20 or 40 lp/mm over a maximum depth of 50mm. The flat field resolution of this system is approximay 15 lp/mm at 0.3X primary magnification. For purposes of our experiment, a blur spot resolution of 0.1 mm or 10 lp/mm was chosen. Depth of field measurements were taken at three aperture settings corresponding to f/2, f/4, and f/8. An important point should be noted about aperture settings. The f-number shown on most fixed focal length lenses is calculated with the object at infinity. As a result, we have adjusted our NA and therefore our aperture values for a 95mm working distance.

The values below highlight a number of points to consider. In general our calculated and measured delta d are fairly close. However, the displacement of the image due to defocus aberrations was not predicted by our calculations. This type of displacement error could certainly be problematic if the system contained an auto iris. If we compare our measured results to the delta-theory, we notice a significant variation. As we mentioned earlier, this variation is due to a false assumption concerning system resolution.

Another property that should be noted in our DOF 1-40 observations is the non-uniform magnification seen through the depth of field range. This is a very common problem in most lenses and, as we stated earlier, can yield significant errors if measurements are made throughout the full depth of field range. Edmund Optics provides several ecentric options to correct for this type of error.

In the end, it is the total performance of an optical system that counts. As a full service supplier and manufacturer of optics, illumination, CCD cameras, monitors, mounting, and electronic imaging related products, Edmund Optics has the knowledge and resources to look at your application as a total system. In fact, innovative tools such as the DOF 1-40 have come about from our own in-house need to quantify system performance. So if you are looking for individual components that can be integrated into your system or starting from scratch, our engineers are ready to help.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號(hào)1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時(shí)在線客服,為您服務(wù)!

版權(quán)所有 © 2024 江陰韻翔光電技術(shù)有限公司 備案號(hào):蘇ICP備16003332號(hào)-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
人善交VIDEOS欧美3D| 亚洲精品无码7777| 久久中文字幕av一区二区不卡| 国产av影视| 久久精品久| 99亚洲| 欧美成人一级| 无码人妻精品一区二区蜜桃百度| 999zyz玖玖资源站在线观看| 亚洲国产欧美国产综合一区| 少妇中文字幕乱码亚洲影视| 国产高清不卡免费视频| 91亚洲精品久久久蜜桃借种| 黄色性生活片| 色狠狠桃花综合| 无码人妻熟妇av又粗又大| 五月婷婷六月丁香中文字幕| 亚洲精品成人无码中文毛片不卡 | 免费看无码自慰一区二区| 墨江| 爽好久久久欧美精电影| 91免费网址| 无码喷水一区二区浪潮av| 日本一区二区免费色色| 97人伦色伦成人免费视频| 亚洲国产一区二区三区在线观看 | 久久成人免费精品网站| 国产女人精品视频国产灰线| 国产六月婷婷爱在线观看| 天天躁狠狠躁狠狠躁夜夜躁 | 中文字幕日产无码| 日本熟妇色XXXXX欧美老妇| 无码一区二区三区AV免费蜜桃| 欧美粉嫩metart成人极品| 欧美电影《疯狂的性趣》| 欧美日韩精品| 亚洲综合久久久| 蜜臀91| 我在开会他在下添好爽视频| 国产午夜久久| 99热在线|