狠狠操av,国产色诱视频在线观看,窝窝人体色www,丝袜老师办公室里做好紧好爽

撥號18861759551

你的位置:首頁 > 技術(shù)文章 > Advantages of Fresnel Lenses

技術(shù)文章

Advantages of Fresnel Lenses

技術(shù)文章

Advantages of Fresnel Lenses

Fresnel lenses consist of a series of concentric grooves etched into plastic. Their thin, lightweight construction, availability in small as well as large sizes, and excellent light gathering ability make them useful in a variety of applications.Fresnel lenses are most often used in light gathering applications, such as condenser systems or emitter/detector setups. They can also be used as magnifiers or projection lenses in illumination systems, and image formulation.

A Fresnel (pronounced fray-NEL) lens replaces the curved surface of a conventional optical lens with a series of concentric grooves. These contours act as individual refracting surfaces, bending parallel light rays to a common focal length (Figure 1). As a result, a Fresnel lens, while physically narrow in profile, is capable of focusing light similar to a conventional optical lens but has several advantages over its thicker counterpart.

 

THE THEORY OF FRESNEL LENSES

The driving principle behind the conception of a Fresnel lens is that the direction of propagation of light does not change within a medium (unless scattered). Instead, light rays are only deviated at the surfaces of a medium. As a result, the bulk of the material in the center of a lens serves only to increase the amount of weight and absorption within the system.

 

To take advantage of this physical property, 18th-century physicists began experimenting with the creation of what is known today as a Fresnel lens. At that time, grooves were cut into a piece of glass in order to create annular rings of a curved profile. This curved profile, when extruded, formed a conventional, curved lens – either spherical or aspherical (Figure 2). Due to this similar optical property compared to a conventional optical lens, a Fresnel lens can offer slightly better focusing performance, depending upon the application. In addition, high groove density allows higher quality images, while low groove density yields better efficiency (as needed in light gathering applications). However, it is important to note that when high precision imaging is required, conventional singlet, doublet, or aspheric optical lenses are still best.

MANUFACTURING FRESNEL LENSES

The first Fresnel lenses were made by tediously grinding and polishing glass by hand. Eventually, molten glass was poured into molds, but it was only with the development of optical-quality plastics and injection-molding technology in the 20th-century that the use of Fresnel lenses in many industrial and commercial applications became practical.

 

Fresnel lenses can be manufactured from a variety of substrates. They are manufactured from acrylic to polycarbonate to vinyl, depending on the desired wavelength of operation. Acrylic is the most common substrate due to its high transmittance in the visible and ultraviolet (UV) regions, but polycarbonate is the substrate of choice in harsh environments due to its resistance to impact and high temperature.

 

APPLICATION EXAMPLES

While French physicist Augustin-Jean Fresnel (1788 - 1827) was not the first to conceptualize a Fresnel lens, he was able to popularize it by integrating it into lighthouses. Since then, Fresnel lenses have been utilized in a variety of applications, from light collimation and light collection to magnification.

 

Light Collimation

 

A Fresnel lens can easily collimate a point source by placing it one focal length away from the source. In a finite-conjugate system, the grooved side of the Fresnel lens should face the longer conjugate (Figures 3 - 4) because this produces the best performance.

Figure 3: Light Collimation of a Point Source with a Fresnel Lens

 

Light Collection

 

One of the most common applications for a Fresnel lens is the collection of solar light, which is considered very nearly parallel (an infinite-conjugate system). Using a Fresnel lens for light collection is ideal for concentrating light onto a photovoltaic cell or to heat a surface. For example, a Fresnel lens can be used for popular home maintenance such as heating a home or pool! In these cases, the overall surface area of the lens determines the amount of collected light.

Figure 4: Light Collimation of a Point Source with a Fresnel Lens

 

Magnification

 

Another common application for a Fresnel lens is magnification. It can be used as a magnifier or projection lens; however, due to the high level of distortion, this is not recommended. Also, the image quality does not compare to that of a higher-precision system given the amount of distortion.

 

While commonly found in solar applications, Fresnel lenses are ideal for any application requiring inexpensive, thin, lightweight positive lens elements. Fresnel lenses are not new technology, but their pervasiveness has increased with improvements in manufacturing techniques and materials. Fresnel lenses are truly unique optical lenses which make them a great tool for a range of interesting and fun optical designs.

聯(lián)系我們

地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
24小時在線客服,為您服務(wù)!

版權(quán)所有 © 2025 江陰韻翔光電技術(shù)有限公司 備案號:蘇ICP備16003332號-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

在線咨詢
QQ客服
QQ:17041053
電話咨詢
0510-68836815
關(guān)注微信
免费a级毛片无码a∨蜜芽试看| 婷婷人人爽人人爽人人片| 综合成人| 韩国理伦三级做爰观看| 日韩亚洲av无码一区二区不卡| 人人妻人人超人人| 亚洲AV无码精品蜜桃| 99久久国产综合精品麻豆| 国产IGAO视频网在线观看| 丁香花在线影院观看在线播放| 久久久久亚洲AV成人片乱码| 成人久久精品一区二区三区| 中文字幕 亚洲精品 第1页| 一级a一级a爰片免费免免在线| av天堂一区| 蜜臀久久久精品人妻久久| 久久怡红院| 国产精品性色aⅴ人妻| 亚洲v天堂| 国产精品a一区二区三| 奇米444| 夜夜草导航| 日韩伦理| 久久播| 中文字幕亚洲区巨区巨| 日韩久| 人人妻碰碰碰免费av视频| 欧美成人色| 久久久久久97| 五月激情综合| 久久日韩精品一区二区五区| 亚洲天堂色| 中文字幕日韩人妻无码| 在线亚洲欧美日韩精品专区| 国产 中文 制服丝袜 另类| 一区二区不卡在线视频| 亚洲成AV人片天堂网久久 | 又爽又色少妇又爽又粗又爽的少妇| 超碰九九| 啪啪啪av| 南郑县|