狠狠操av,国产色诱视频在线观看,窝窝人体色www,丝袜老师办公室里做好紧好爽

撥號18861759551

你的位置:首頁 > 產(chǎn)品展示 > 光纖器件 > 光纖跳線 >Thorlabs多模光纖旋轉(zhuǎn)接頭跳線

產(chǎn)品詳細(xì)頁
Thorlabs多模光纖旋轉(zhuǎn)接頭跳線

Thorlabs多模光纖旋轉(zhuǎn)接頭跳線

  • 產(chǎn)品型號:
  • 更新時間:2023-12-19
  • 產(chǎn)品介紹:Thorlabs多模光纖旋轉(zhuǎn)接頭跳線是任何需要旋轉(zhuǎn)一個光纖接頭的實(shí)驗(yàn)的整體式解決方案。內(nèi)置的旋轉(zhuǎn)接頭允許連接在旋轉(zhuǎn)節(jié)上的光纜自由轉(zhuǎn)動,而保持其它光纜不動,從而降低實(shí)驗(yàn)中發(fā)生損傷的危險。相比將旋轉(zhuǎn)接頭和跳線分離的方案,無透鏡設(shè)計(jì)使插入損耗更低,旋轉(zhuǎn)透射變化更小。
  • 廠商性質(zhì):代理商
  • 在線留言

產(chǎn)品介紹

品牌Thorlabs價格區(qū)間面議
組件類別光學(xué)元件應(yīng)用領(lǐng)域電子

Thorlabs多模光纖旋轉(zhuǎn)接頭跳線

Thorlabs多模光纖旋轉(zhuǎn)接頭跳線特性

鉸接式旋轉(zhuǎn)接頭可以防止扭轉(zhuǎn)時對光纖的損壞

Ø200微米或400微米纖芯的多模光纖

可選SMA905或FC/PC(2.0 mm窄鍵)接頭

可定制跳線

轉(zhuǎn)動極其平滑

SM05螺紋(0.535"-40)旋轉(zhuǎn)接頭用于固定安裝

Thorlabs的多模(MM)光纖旋轉(zhuǎn)接頭跳線是任何需要旋轉(zhuǎn)一個光纖接頭的實(shí)驗(yàn)的整體式解決方案。內(nèi)置的旋轉(zhuǎn)接頭允許連接在旋轉(zhuǎn)節(jié)上的光纜自由轉(zhuǎn)動,而保持其它光纜不動,從而降低實(shí)驗(yàn)中發(fā)生損傷的危險。相比將旋轉(zhuǎn)接頭和跳線分離的方案,無透鏡設(shè)計(jì)使插入損耗更低,旋轉(zhuǎn)透射變化更小。

這種旋轉(zhuǎn)接頭經(jīng)過精密加工,并帶有密封軸承,可以進(jìn)行極其平滑的轉(zhuǎn)動,具有很長的使用壽命以及在轉(zhuǎn)動時的低信號強(qiáng)度振動特性。該旋轉(zhuǎn)接頭具有SM05(0.535英寸-40)安裝螺紋,可以兼容我們的Ø1/2英寸光學(xué)元件安裝座。使用我們的C059TC夾具,通過卡入式安裝這些跳線,可以快速安裝連接器Ø0.59英寸的主體。

這些跳線采用FT200EMT型Ø200 µm纖芯或FT400EMT型Ø400 µm纖芯、數(shù)值孔徑0.39的光纖。有一種1米長光纖,它的旋轉(zhuǎn)接頭兩側(cè)有標(biāo)準(zhǔn)的FT020橙色套管,光纖端是一個FC/PC或SMA接頭。每一根旋轉(zhuǎn)接頭跳線包括兩個保護(hù)蓋,用于防止灰塵和其它有害物質(zhì)落入插芯端。額外的用于SMA接頭的CAPM橡膠或CAPMM金屬蓋,以及用在FC/PC接頭的CAPF塑料或CAPFM金屬蓋也可單獨(dú)購買。相比未端接的光纖,這些跳線的大功率因連接而受到限制。詳細(xì)信息請查看損傷閾值標(biāo)簽。

光遺傳學(xué)我們也供應(yīng)用于光遺傳學(xué)的旋轉(zhuǎn)接頭跳線。它們用在該領(lǐng)域是因?yàn)樗鼈儗\(yùn)動樣品提供便利。這些跳線不同之處是它們帶低剖面金屬頭的更輕的黑色插芯,在旋轉(zhuǎn)接頭的樣品一側(cè)插入針頭連接。它們?yōu)檫B接光源和移植的光針頭提供完整方案,并且兼容Thorlabs所有光源和光遺傳學(xué)設(shè)備。Thorlabs供應(yīng)用于活體刺激的齊全的光遺傳學(xué)設(shè)備,包括:用于光遺傳學(xué)的可移植光纖針頭、光纖跳線和旋轉(zhuǎn)接頭跳線以及LED和激光光源。

旋轉(zhuǎn)接頭上的SM05外螺紋兼容我們的SM05螺紋元件安裝座,比如這里的LMR05透鏡安裝座。

旋轉(zhuǎn)接頭在兩個光纖的金屬套管緊鄰處采用尾部耦合設(shè)計(jì)減少插入損耗

定制旋轉(zhuǎn)接頭跳線

旋轉(zhuǎn)接頭跳線的光纖引線為性連接到旋轉(zhuǎn)接頭上,以保證更高的性能,并且提供整體式的光纖光學(xué)元件解決方案。為了和更廣范圍的實(shí)驗(yàn)裝置,我們還提供定制具有不同纖芯和NA的光纖的旋轉(zhuǎn)接頭跳線。我們還可以制造不同接頭或者不同長度光纖的跳線。為了能夠達(dá)到佳性能,我們建議纖芯直徑為200微米或更大的光纖。聯(lián)系技術(shù)支持訂購定制的旋轉(zhuǎn)接頭跳線。

 

In-Stock  Multimode Fiber Optic Patch Cable Selection

Step Index

Graded  Index

Fiber Bundles

Uncoated

Coated

Mid-IR

Optogenetics

Specialized Applications

SMA
 FC/PC
 FC/PC to SMA
 Square-Core FC/PC and SMA

AR-Coated SMA
 HR-Coated FC/PC
 Beamsplitter-Coated FC/PC

Fluoride FC and SMA

Lightweight FC/PC
 Lightweight SMA
 Rotary Joint FC/PC and SMA

High-Power SMA
 UHV, High-Temp. SMA
 Armored SMA
 Solarization-Resistant SMA

FC/PC
 FC/PC to LC/PC

規(guī)格

Specifications

Item #

RJPS2

RJPF2

RJPS4

RJPF4

Connector Type

SMA
 (10230Aa)

FC/PC
 (30230C1b)

SMA
 (10440Aa)

FC/PC
 (30440C1b)

Fiber Type

FT200EMT

FT400EMT

Fiber Core Size

Ø200 µm

Ø400 µm

Fiber NA

0.39 ± 0.02

Wavelength Range

400 - 2200 nm

Length

1 m on Both Sides of Rotary Joint

Fiber Jacket

Ø2 mm, Orange (FT020)

Rotary  Joint Specifications

Insertion Loss  Through Rotary Joint

< 2.0 dB (Transmission >63%)

Variation in  Insertion Loss
 During Rotation

±0.4 dB (Transmission ±8%)

Start-Up Torque

< 0.01 N•m

RPM (Max)c

10,000

Lifetime Cycle

200 - 400 Million Revolutions

Operating  Temperature

< 50 °C

a.     與用于Ø2 mm套管的190088CP消應(yīng)力套管連接。

b.     與用于Ø2 mm套管的190066CP消應(yīng)力套管連接。

c.     僅針對旋轉(zhuǎn)接頭部分中的軸承所測的數(shù)據(jù)。

 

光纖規(guī)格

Item #

Fiber Type

NA

Core /
 Cladding

Core
 Diameter

Cladding
 Diameter

Coating
 Diameter

Max Core
 Offset

Bend Radius
 (Short Term / Long Term)

RJPF2 and RJPS2

FT200EMT

0.39 ± 0.02

Pure Silica /
 TECS Hard Cladding

200 ± 5 μm

225 ± 5 μm

500 ± 30 μm

5 µm

9 mm / 18 mm

RJPF4 and RJPS4

FT400EMT

  

400 ± 8 μm

425 ± 10 μm

730 ± 30 μm

7 µm

20 mm / 40 mm

 

多模光纖教程

在光纖中引導(dǎo)光

光纖屬于光波導(dǎo),光波導(dǎo)是一種更為廣泛的光學(xué)元件,可以利用全內(nèi)反射(TIR)在固體或液體結(jié)構(gòu)中限制并引導(dǎo)光。光纖通??梢栽诒姸鄳?yīng)用中使用;常見的例子包括通信、光譜學(xué)、照明和傳感器。比較常見的玻璃(石英)纖維使用一種稱之為階躍折射率光纖的結(jié)構(gòu),如右圖所示。這種光纖的纖芯由一種折射率比外面包層高的材料構(gòu)成。在光纖中以臨界角入射時,光會在纖芯/包層界面產(chǎn)生全反射,而不會折射到周圍的介質(zhì)中。為了達(dá)到TIR的條件,發(fā)射到光纖中入射光的角度必須小于某個角度,即接收角,θacc。根據(jù)斯涅耳定律可以計(jì)算出這個角:

    其中,ncore為纖芯的折射率,nclad為光纖包層的折射率,n為外部介質(zhì)的折射率,θcrit為臨界角,θacc為光纖的接收半角。數(shù)值孔徑(NA)是一個無量綱量,由光纖制造商用來確定光纖的接收角,表示為:

    對于芯徑(多模)較大的階躍折射率光纖,使用這個等式可以直接計(jì)算出NA。NA也可以由實(shí)驗(yàn)確定,通過追蹤遠(yuǎn)場光束分布并測量光束中心與光強(qiáng)為大光強(qiáng)5%的點(diǎn)之間的角度即可;但是,直接計(jì)算NA得出的值更為準(zhǔn)確。

    光纖的全內(nèi)反射

    光纖中的模式數(shù)量

    光在光纖中傳播的每種可能路徑即為光纖的導(dǎo)模。根據(jù)纖芯/包層區(qū)域的尺寸、折射率和波長,單光纖內(nèi)可支持從一種到數(shù)千種模式。而其中常使用兩種為單模(支持單導(dǎo)模)和多模(支持多種導(dǎo)模)。在多模光纖中,低階模傾向于在空間上將光限制在纖芯內(nèi);而高階模傾向于在空間上將光限制在纖芯/包層界面的附近。

    使用一些簡單的計(jì)算就可以估算出光纖支持的模(單?;蚨嗄?的數(shù)量。歸一化頻率,也就是常說的V值,是一個無量綱的數(shù),與自由空間頻率成比例,但被歸為光纖的引導(dǎo)屬性。V值表示為:

    其中V為歸一化頻率(V值),a為纖芯半徑,λ為自由空間波長。多模光纖的V值非常大;例如,芯徑為Ø50 µm、數(shù)值孔徑為0.39的多模光纖,在波長為1.5 µm時,V值為40.8。

    對于具有較大V值的多模光纖,可以使用下式近似計(jì)算其支持的模式數(shù)量:

    上面例子中,芯徑為Ø50 µm、NA為0.39的多模光纖支持大約832種不同的導(dǎo)模,這些??梢酝瑫r穿過光纖。

    單模光纖V值必須小于截止頻率2.405,這表示在這個時候,光只耦合到光纖的基模中。為了滿足這個條件,單模光纖的纖芯尺寸和NA要遠(yuǎn)小于同波長下的多模光纖。例如SMF-28超單模光纖的標(biāo)稱NA為0.14,芯徑為Ø8.2 µm,在波長為1550nm時,V值為2.404。

    衰減來源

    光纖損耗,也稱之為衰減,是光纖的特性,可以通過量化來預(yù)測光纖裝置內(nèi)的總透射功率損耗。這些損耗來源一般與波長相關(guān),因光纖的使用材料或光纖的彎曲等而有所差異。常見衰減來源的詳情如下:

    吸收

    標(biāo)準(zhǔn)光纖中的光通過固體材料引導(dǎo),因此,光在光纖中傳播會因吸收而產(chǎn)生損耗。標(biāo)準(zhǔn)光纖使用熔融石英制造,經(jīng)優(yōu)化可在波長1300 nm-1550 nm的范圍內(nèi)傳播。波長更長(>2000nm)時,熔融石英內(nèi)的多聲子相互作用造成大量吸收。使用氟化鋯、氟化銦等氟氧物玻璃制造中紅外光纖,主要是因?yàn)樗鼈兲幱谶@些波長范圍時損耗較低。氟化鋯、氟化銦的多聲子邊分別為~3.6 µm和~4.6 µm。

    光纖內(nèi)的污染物也會造成吸收損耗。其中一種污染物就是困在玻璃纖維中的水分子,可以吸收波長在1300 nm和2.94 µm的光。由于通信信號和某些激光器也是在這個區(qū)域里工作,光纖中的任意水分子都會明顯地衰減信號。

    玻璃纖維中離子的濃度通常由制造商控制,以便調(diào)節(jié)光纖的傳播/衰減屬性。例如,石英中本來就存在羥基(OH-),可以吸收近紅外到紅外光譜的光。因此,羥基濃度較低的光纖更適合在通信波長下傳播。而羥基濃度較高的光纖在紫外波長范圍時有助于傳播,因此,更適合對熒光或UV-VIS光譜學(xué)等應(yīng)用感興趣的用戶。

    散射

    對于大多數(shù)光纖應(yīng)用來說,光散射也是損耗的來源,通常在光遇到介質(zhì)的折射率發(fā)生變化時產(chǎn)生。這些變化可以是由雜質(zhì)、微?;驓馀菀鸬耐庠谧兓?;也可以是由玻璃密度的波動、成分或相位態(tài)引起的內(nèi)在變化。散射與光的波長呈負(fù)相關(guān)關(guān)系,因此,在光譜中的紫外或藍(lán)光區(qū)域等波長較短時,散射損耗會比較大。使用恰當(dāng)?shù)墓饫w清潔、操作和存儲存步驟可以盡可能地減少光纖*的雜質(zhì),避免產(chǎn)生較大的散射損耗。

    彎曲損耗

    因光纖的外部和內(nèi)部幾何發(fā)生變化而產(chǎn)生的損耗稱之為彎曲損耗。通常包含兩大類:宏彎損耗和微彎損耗。

    宏彎損耗造成的衰減

      微彎損耗造成的衰減

      宏彎損耗一般與光纖的物理彎曲相關(guān);例如,將其卷成圈。如右圖所示,引導(dǎo)的光在空間上分布在光纖的纖芯和包層區(qū)域。以某半徑彎曲光纖時,在彎曲外半徑的光不能在不超過光速時維持相同的空間模分布。相反,由于輻射能量會損耗到周邊環(huán)境中。彎曲半徑較大時,與彎曲相關(guān)的損耗會比較??;但彎曲半徑小于光纖的推薦彎曲半徑時,彎曲損耗會非常大。光纖可以在彎曲半徑較小時進(jìn)行短時間工作;但如果要長期儲存,彎曲半徑應(yīng)該大于推薦值。使用恰當(dāng)?shù)膬Υ鏃l件(溫度和彎曲半徑)可以降低對光纖造成性損傷的幾率;FSR1光纖纏繞盤設(shè)計(jì)用來大程度地減少高彎曲損耗。

      微彎損耗由光纖的內(nèi)部幾何,尤其是纖芯和包層發(fā)生變化而產(chǎn)生。光纖結(jié)構(gòu)中的這些隨機(jī)變化(即凸起)會破壞全內(nèi)反射所需的條件,使得傳播的光耦合到非傳播模中,造成泄露(詳情請看右圖)。與由彎曲半徑控制的宏彎損耗不同,微彎損耗是由制造光纖時在光纖內(nèi)造成的性缺陷而產(chǎn)生。

      包層模

      雖然多模光纖中的大多數(shù)光通過纖芯內(nèi)的TIR引導(dǎo),但是由于TIR發(fā)生在包層與涂覆層/保護(hù)層的界面,在纖芯和包層內(nèi)引導(dǎo)光的高階模也可能存在。這樣就產(chǎn)生了我們所熟知的包層模。這樣的例子可在右邊的光束分布測量中看到,其中體現(xiàn)了包層模包層中的光強(qiáng)比纖芯中要高。這些??梢圆粋鞑?即它們不滿足TIR的條件),也可以在一段很長的光纖中傳播。由于包層模一般為高階模,在光纖彎曲和出現(xiàn)微彎缺陷時,它們就是損耗的來源。通過接頭連接兩個光纖時包層模會消失,因?yàn)樗鼈儾荒茉诠饫w之間輕松耦合。

      由于包層模對光束空間輪廓的影響,有些應(yīng)用(比如發(fā)射到自由空間中)中可能不需要包層模。光纖較長時,這些模會自然衰減。對于長度小于10 m的光纖,消除包層模的一種辦法就是將光纖纏繞在半徑合適的芯軸上,這樣能保留需要的傳播模式。

      在FT200EMT多模光纖與M565F1 LED的光束輪廓中,展現(xiàn)了包層而不是纖芯引導(dǎo)的光。

      入纖方式

      多模光纖未充滿條件

      對于在NA較大時接收光的多模光纖來說,光耦合到光纖的的條件(光源類型、光束直徑、NA)對性能有著極大影響。在耦合界面,光的光束直徑和NA小于光纖的芯徑和NA時,就出現(xiàn)了未充滿的入纖條件。這種情況的常見例子就是將激光光源發(fā)射到較大的多模光纖。從下面的圖和光束輪廓測量可以看出,未充滿時會使光在空間上集中到光纖的中心,優(yōu)先充滿低階模,而非高階模。因此,它們對宏彎損耗不太敏感,也沒有包層模。這種條件下,所測的插入損耗也會小于典型值,光纖纖芯處有著較高的功率密度。

      展示未充滿條件的圖(左邊)和使用FT200EMT多模光纖進(jìn)行的光束輪廓測量(右邊)。

      多模光纖過滿條件

      在耦合界面,光束直徑和NA大于光纖的芯徑和NA時就出現(xiàn)了過滿的情況。實(shí)現(xiàn)這種條件的一個方法就是將LED光源的光發(fā)射到較小的多模光纖中。過滿時會將整個纖芯和部分包層裸露在光中,均勻充滿低階模和高階模(請看下圖),增加耦合到光纖包層模的可能性。高階模比例的增加意味著過滿光纖對彎曲損耗會更為敏感。在這種條件下,所測的插入損耗會大于典型值,與未充滿光纖條件相比,會產(chǎn)生較高的總輸出功率。

      展示過滿條件的圖(左邊)和使用FT200EMT多模光纖進(jìn)行的光束輪廓測量(右邊)。

      多模光纖未充滿或過滿條件各有優(yōu)劣,這取決于特定應(yīng)用的要求。如需測量多模光纖的基準(zhǔn)性能,Thorlabs建議使用光束直徑為光纖芯徑70-80%的入纖條件。過滿條件在短距離時輸出功率更大;而長距離(>10 - 20 m)時,對衰減較為敏感的高階模會消失。

       

      損傷閥值

      激光誘導(dǎo)的光纖損傷

       

      Quick Links

      Damage at the Air / Glass Interface

      Intrinsic Damage Threshold

      Preparation and Handling of Optical Fibers

       

      空氣-玻璃界面的損傷

      空氣/玻璃界面有幾種潛在的損傷機(jī)制。自由空間耦合或使用光學(xué)接頭匹配兩根光纖時,光會入射到這個界面。如果光的強(qiáng)度很高,就會降低功率的適用性,并給光纖造成性損傷。而對于使用環(huán)氧樹脂將接頭與光纖固定的終端光纖而言,高強(qiáng)度的光產(chǎn)生的熱量會使環(huán)氧樹脂熔化,進(jìn)而在光路中的光纖表面留下殘留物。

       

      損傷的光纖端面

        未損傷的光纖端面

        裸纖端面的損傷機(jī)制

        光纖端面的損傷機(jī)制可以建模為大光學(xué)元件,紫外熔融石英基底的工業(yè)標(biāo)準(zhǔn)損傷閾值適用于基于石英的光纖(參考右表)。但是與大光學(xué)元件不同,與光纖空氣/璃界面相關(guān)的表面積和光束直徑都非常小,耦合單模(SM)光纖時尤其如此,因此,對于給定的功率密度,入射到光束直徑較小的光纖的功率需要比較低。

        右表列出了兩種光功率密度閾值:一種理論損傷閾值,一種"實(shí)際安全水平"。一般而言,理論損傷閾值代表在光纖端面和耦合條件非常好的情況下,可以入射到光纖端面且沒有損傷風(fēng)險的大功率密度估算值。而"實(shí)際安全水平"功率密度代表光纖損傷的低風(fēng)險。超過實(shí)際安全水平操作光纖或元件也是有可以的,但用戶必須遵守恰當(dāng)?shù)倪m用性說明,并在使用前在低功率下驗(yàn)證性能。

        多模(MM)光纖的有效面積由纖芯直徑確定,一般要遠(yuǎn)大于SM光纖的MFD值。如要獲得佳耦合效果,Thorlabs建議光束的光斑大小聚焦到纖芯直徑的70 - 80%。由于多模光纖的有效面積較大,降低了光纖端面的功率密度,因此,較高的光功率(一般上千瓦的數(shù)量級)可以無損傷地耦合到多模光纖中。

         

        Estimated Optical Power Densities on Air / Glass Interfacea

        Type

        Theoretical Damage Thresholdb

        Practical Safe Levelc

        CW(Average Power)

        ~1 MW/cm2

        ~250 kW/cm2

        10 ns Pulsed(Peak Power)

        ~5 GW/cm2

        ~1 GW/cm2

        所有值針對無終端(裸露)的石英光纖,適用于自由空間耦合到潔凈的光纖端面。

        這是可以入射到光纖端面且沒有損傷風(fēng)險的大功率密度估算值。用戶在高功率下工作前,必須驗(yàn)證系統(tǒng)中光纖元件的性能與可靠性,因其與系統(tǒng)有著緊密的關(guān)系。

        這是在大多數(shù)工作條件下,入射到光纖端面且不會損傷光纖的安全功率密度估算值。

        插芯/接頭終端相關(guān)的損傷機(jī)制

        有終端接頭的光纖要考慮更多的功率適用條件。光纖一般通過環(huán)氧樹脂粘合到陶瓷或不銹鋼插芯中。光通過接頭耦合到光纖時,沒有進(jìn)入纖芯并在光纖中傳播的光會散射到光纖的外層,再進(jìn)入插芯中,而環(huán)氧樹脂用來將光纖固定在插芯中。如果光足夠強(qiáng),就可以熔化環(huán)氧樹脂,使其氣化,并在接頭表面留下殘?jiān)?。這樣,光纖端面就出現(xiàn)了局部吸收點(diǎn),造成耦合效率降低,散射增加,進(jìn)而出現(xiàn)損傷。

        與環(huán)氧樹脂相關(guān)的損傷取決于波長,出于以下幾個原因。一般而言,短波長的光比長波長的光散射更強(qiáng)。由于短波長單模光纖的MFD較小,且產(chǎn)生更多的散射光,則耦合時的偏移也更大。

        為了大程度地減小熔化環(huán)氧樹脂的風(fēng)險,可以在光纖端面附近的光纖與插芯之間構(gòu)建無環(huán)氧樹脂的氣隙光纖接頭。我們的高功率多模光纖跳線就使用了這種設(shè)計(jì)特點(diǎn)的接頭。

        曲線圖展現(xiàn)了帶終端的單模石英光纖的大概功率適用水平。每條線展示了考慮具體損傷機(jī)制估算的功率水平。大功率適用性受到所有相關(guān)損傷機(jī)制的低功率水平限制(由實(shí)線表示)。

        確定具有多種損傷機(jī)制的功率適用性

        光纖跳線或組件可能受到多種途徑的損傷(比如,光纖跳線),而光纖適用的大功率始終受到與該光纖組件相關(guān)的低損傷閾值的限制。

        例如,右邊曲線圖展現(xiàn)了由于光纖端面損傷和光學(xué)接頭造成的損傷而導(dǎo)致單模光纖跳線功率適用性受到限制的估算值。有終端的光纖在給定波長下適用的總功率受到在任一給定波長下,兩種限制之中的較小值限制(由實(shí)線表示)。在488 nm左右工作的單模光纖主要受到光纖端面損傷的限制(藍(lán)色實(shí)線),而在1550
        nm下工作的光纖受到接頭造成的損傷的限制(紅色實(shí)線)。

        對于多模光纖,有效模場由纖芯直徑確定,一般要遠(yuǎn)大于SM光纖的有效模場。因此,其光纖端面上的功率密度更低,較高的光功率(一般上千瓦的數(shù)量級)可以無損傷地耦合到光纖中(圖中未顯示)。而插芯/接頭終端的損傷限制保持不變,這樣,多模光纖的大適用功率就會受到插芯和接頭終端的限制。

        請注意,曲線上的值只是在合理的操作和對準(zhǔn)步驟幾乎不可能造成損傷的情況下粗略估算的功率水平值。值得注意的是,光纖經(jīng)常在超過上述功率水平的條件下使用。不過,這樣的應(yīng)用一般需要專業(yè)用戶,并在使用之前以較低的功率進(jìn)行測試,盡量降低損傷風(fēng)險。但即使如此,如果在較高的功率水平下使用,則這些光纖元件應(yīng)該被看作實(shí)驗(yàn)室消耗品。

        光纖內(nèi)的損傷閾值

        除了空氣玻璃界面的損傷機(jī)制外,光纖本身的損傷機(jī)制也會限制光纖使用的功率水平。這些限制會影響所有的光纖組件,因?yàn)樗鼈兇嬖谟诠饫w本身。光纖內(nèi)的兩種損傷包括彎曲損耗和光暗化損傷。

        制備和處理光纖

        通用清潔和操作指南

        建議將這些通用清潔和操作指南用于所有的光纖產(chǎn)品。而對于具體的產(chǎn)品,用戶還是應(yīng)該根據(jù)輔助文獻(xiàn)或手冊中給出的具體指南操作。只有遵守了所有恰當(dāng)?shù)那鍧嵑筒僮鞑襟E,損傷閾值的計(jì)算才會適用。

        安裝或集成光纖(有終端的光纖或裸纖)前應(yīng)該關(guān)掉所有光源,以避免聚焦的光束入射在接頭或光纖的脆弱部分而造成損傷。

        光纖適用的功率直接與光纖/接頭端面的質(zhì)量相關(guān)。將光纖連接到光學(xué)系統(tǒng)前,一定要檢查光纖的末端。端面應(yīng)該是干凈的,沒有污垢和其它可能導(dǎo)致耦合光散射的污染物。另外,如果是裸纖,使用前應(yīng)該剪切,用戶應(yīng)該檢查光纖末端,確保切面質(zhì)量良好。

        如果將光纖熔接到光學(xué)系統(tǒng),用戶先應(yīng)該在低功率下驗(yàn)證熔接的質(zhì)量良好,然后在高功率下使用。熔接質(zhì)量差,會增加光在熔接界面的散射,從而成為光纖損傷的來源。

        對準(zhǔn)系統(tǒng)和優(yōu)化耦合時,用戶應(yīng)該使用低功率;這樣可以大程度地減少光纖其他部分(非纖芯)的曝光。如果高功率光束聚焦在包層、涂覆層或接頭,有可能產(chǎn)生散射光造成的損傷。

        高功率下使用光纖的注意事項(xiàng)

        一般而言,光纖和光纖元件應(yīng)該要在安全功率水平限制之內(nèi)工作,但在理想的條件下(佳的光學(xué)對準(zhǔn)和非常干凈的光纖端面),光纖元件適用的功率可能會增大。用戶先必須在他們的系統(tǒng)內(nèi)驗(yàn)證光纖的性能和穩(wěn)定性,然后再提高輸入或輸出功率,遵守所有所需的安全和操作指導(dǎo)。以下事項(xiàng)是一些有用的建議,有助于考慮在光纖或組件中增大光學(xué)功率。

        要防止光纖損傷光耦合進(jìn)光纖的對準(zhǔn)步驟也是重要的。在對準(zhǔn)過程中,在取得佳耦合前,光很容易就聚焦到光纖某部位而不是纖芯。如果高功率光束聚焦在包層或光纖其它部位時,會發(fā)生散射引起損傷

        使用光纖熔接機(jī)將光纖組件熔接到系統(tǒng)中,可以增大適用的功率,因?yàn)樗梢源蟪潭鹊販p少空氣/光纖界面損傷的可能性。用戶應(yīng)該遵守所有恰當(dāng)?shù)闹笇?dǎo)來制備,并進(jìn)行高質(zhì)量的光纖熔接。熔接質(zhì)量差可能導(dǎo)致散射,或在熔接界面局部形成高熱區(qū)域,從而損傷光纖。

        連接光纖或組件之后,應(yīng)該在低功率下使用光源測試并對準(zhǔn)系統(tǒng)。然后將系統(tǒng)功率緩慢增加到所希望的輸出功率,同時周期性地驗(yàn)證所有組件對準(zhǔn)良好,耦合效率相對光學(xué)耦合功率沒有變化。

        由于劇烈彎曲光纖造成的彎曲損耗可能使光從受到應(yīng)力的區(qū)域漏出。在高功率下工作時,大量的光從很小的區(qū)域(受到應(yīng)力的區(qū)域)逃出,從而在局部形成產(chǎn)生高熱量,進(jìn)而損傷光纖。請?jiān)诓僮鬟^程中不要破壞或突然彎曲光纖,以盡可能地減少彎曲損耗。

        用戶應(yīng)該針對給定的應(yīng)用選擇合適的光纖。例如,大模場光纖可以良好地代替標(biāo)準(zhǔn)的單模光纖在高功率應(yīng)用中使用,因?yàn)榍罢呖梢蕴峁└训墓馐|(zhì)量,更大的MFD,且可以降低空氣/光纖界面的功率密度。

        階躍折射率石英單模光纖一般不用于紫外光或高峰值功率脈沖應(yīng)用,因?yàn)檫@些應(yīng)用與高空間功率密度相關(guān)。

         

        旋轉(zhuǎn)接頭跳線,Ø200微米光纖

        Item #

        Fiber

        Core
         Diameter

        Cladding
         Diameter

        NA

        Bend Radius
         (Short Term/Long Term)

        Wavelength
         Range

        Attenuation
         Plot

        Connectors

        Jacket

        RJPS2

        FT200EMT

        200 ± 5 µm

        225 ± 5 µm

        0.39

        9 mm / 18 mm

        400 - 2200 nm
         (Low OH)

        SMA905 (10230Aa)

        FT020

        (Ø2 mm)

        RJPF2

        FC/PC (30230C1b)

        a.    與用于Ø2 mm套管的190088CP消應(yīng)力套管連接。

        b.    與用于Ø2 mm套管的190066CP消應(yīng)力套管連接。

         

        產(chǎn)品型號

        公英制通用

        RJPS2

        SMA到SMA,Ø200微米,0.39數(shù)值孔徑旋轉(zhuǎn)跳線,長2米

        RJPF2

        FC/PC到FC/PC,Ø200微米,0.39數(shù)值孔徑旋轉(zhuǎn)跳線,長2米

         

        旋轉(zhuǎn)接頭跳線,Ø400微米光纖

        Item #

        Fiber

        Core
         Diameter

        Cladding
         Diameter

        NA

        Bend Radius
         (Short Term/Long Term)

        Wavelength
         Range

        Attenuation
         Plot

        Connectors

        Jacket

        RJPS4

        FT400EMT

        400 ± 8 µm

        425 ± 10 µm

        0.39

        20 mm / 40 mm

        400 - 2200 nm
         (Low OH)

        SMA905 (10440Aa)

        FT020

        (Ø2 mm)

        RJPF4

        FC/PC (30440C1b)

        與用于Ø2 mm套管的190088CP消應(yīng)力套管連接。

        與用于Ø2 mm套管的190066CP消應(yīng)力套管連接。

         

        產(chǎn)品型號

        公英制通用

        RJPS4

        SMA到SMA,Ø400微米,0.39數(shù)值孔徑旋轉(zhuǎn)跳線,長2米

        RJPF4

        FC/PC到FC/PC,Ø400微米,0.39數(shù)值孔徑旋轉(zhuǎn)跳線,長2米

        損傷的光纖端面

          留言框

          • 產(chǎn)品:

          • 您的單位:

          • 您的姓名:

          • 聯(lián)系電話:

          • 常用郵箱:

          • 省份:

          • 詳細(xì)地址:

          • 補(bǔ)充說明:

          • 驗(yàn)證碼:

            請輸入計(jì)算結(jié)果(填寫阿拉伯?dāng)?shù)字),如:三加四=7

          聯(lián)系我們

          地址:江蘇省江陰市人民東路1091號1017室 傳真:0510-68836817 Email:sales@rympo.com
          24小時在線客服,為您服務(wù)!

          版權(quán)所有 © 2024 江陰韻翔光電技術(shù)有限公司 備案號:蘇ICP備16003332號-1 技術(shù)支持:化工儀器網(wǎng) 管理登陸 GoogleSitemap

          在線咨詢
          QQ客服
          QQ:17041053
          電話咨詢
          0510-68836815
          關(guān)注微信
          久久精品国产亚洲av大全| 欧美性综合| 亚洲成av人片久久| 国产乱人伦AV在线A麻豆| aaa级久久久精品无码片| 久久亚洲成人| 免费国产线观看免费观看| 精品欧美h无遮挡在线看中文| 人妻夜夜爽天天天爽欧美色院| 成人免费一区二区三区视频软件| 高潮流白浆潮喷在线播放视频 | 一区二区免费高清观看国产丝瓜| 东京热一区二区三区| 亚洲欧美人成视频一区在线| 亚洲av日韩综合一区二区三区| 乐进| 欧洲熟妇色XXXXX视频| 亚洲AV无码精品色午夜蛋壳| 成人免费看黄网站yyy456| 美女张开腿让男人桶爽| 午夜一区二区国产好的精华液| 久久www免费人成_网站| 久久99精品久久久大学生| 仲巴县| 996久久国产精品线观看| 亚洲黄色三级| 四虎影视app最新免费版| 91精品久久日日躁夜夜躁欧美 | 粉嫩av一区二区老牛影视| 婷婷丁香综合| 欧美日韩一区二区三区在线观看| 婷婷丁香六月| 人人妻人人玩人人澡人人爽| 人妻被按摩到潮喷中文字幕| 天天夜碰日日摸日日澡性色AV| 九九九九九九九伊人| 2021国产精品| 影音先锋无码a∨男人资源站| 在线激情无码免费看| 久久99精品国产麻豆宅宅| 日本乱偷互换人妻中文字幕|